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Abstract-The curvature function method for two-dimensional shape optimization under stress con- 
straints is developed. This method uses curvatures along the boundary curve as the design variables. First 
it is shown that local curvature has a monotonic relation to stress. Based on this, a zero-order search 
direction can be defined to search for the optimum curvature function which achieves a fully stressed 
boundary. No sensitivity analysis is required, and the method is completely independent of the analysis 
techniques for calculating the stress. The resulting curve has C* continuity if the curvature function is 
continuous. Three design examples are presented. 

INTRODUCTION 

Most research in shape optimization is focused on 
interfacing structural analysis programs directly with 
first-order optimization algorithms (e.g. sequential 
linear programming [l-3] and CONMIN feasible di- 
rection algorithm). These algorithms require gradi- 
ents of constraints on structural responses such as 
stress, displacement and natural frequencies. There- 
fore sensitivity analysis of the structural responses 
has been an important research topic in the field of 
shape optimization. Calculating sensitivity by finite 
difference is computationally expensive when the 
number of design variables is large. On the other 
hand, analytical methods for sensitivity calculation 
are computationally more efficient, but considerable 
coding is required by experts in the field to implement 
them, and the available design variables are still 
limited. 

These difficulties in obtaining first-order infor- 
mation motivated the current work of developing the 
curvature function method presented here. There is a 
zero-order optimization method for two-dimensional 
shape optimization under stress constraints; only one 
structural analysis is needed for each iteration, no 
sensitivity analysis is required. Fully stressed design 
is used as the optimality criterion. Since it is shown 
that the local curvature has a monotonic relation to 
stress, a zero-order search direction can therefore be 
defined to search for the optimum curvature function 
which achieves a fully stressed boundary. Three 
design examples are presented. The first example is a 
cantilever beam problem which has an analytical 
solution for comparison. The other two examples 

have appeared widely in the shape optimization 
literature. The second example is to find the profiles 
of a constant stress fillet of a tension bar. The last 
example is the design of a torque arm. 

CURVATURE AND STRESS AT A TWO-DIMENSIONAL 
BOUNDARY 

In a two-dimensional stress problem, the stress 
value at a boundary point is determined by two 
factors: (I) the nominal stress; and (2) the stress 
concentration effect. Nominal stress depends on the 
load and the amount of material carrying the load. 
Obviously, the nominal stress can be reduced by 
adding material and vice versa. Stress concentration 
depends on the smoothness of local geometry. 
Abrupt change in local geometry results in high stress 
concentration. 

Boundary smoothness has been one of the key 
factors for the success of two-dimensional shape 
optimization problems under stress constraints. Re- 
searchers have used polynomial [2, 7, $1 or sphne 
curves [3,9-121, in which smoothness is a built-in 
feature, for boundary representation. However, there 
has not yet been an explicit measure of smoothness 
used in the optimization process. 

Curvature of the boundary curve can be used for 
this purpose, since it is closely related to stress 
concentrated effects. Peterson [I31 showed the well- 
known fact that the stress concentration factor at a 
notch or a shoulder fillet increases monotonically 
as the radius (inverse of curvature) of the notch or 
fillet decreases. The basis for Petersen’s results were 
experiments. Recent research by Gao [I41 gives 
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an analytical solution for stress concentration at 
slightly undulating surfaces, which shows the same 
monotonic relation. 

Under the assumption that the stress at a boundary 
point depends only on the depth (the amount of 
material) under this point and the curvature at this 
point, it can be shown that varying a single boundary 
to minimize the area under it, subject to the maxi- 
mum stress constraint, the stress constraint is active 
everywhere along the boundary [15]. The fully 
stressed design criterion is widely used as the optimal- 
ity criterion in structural optimal design. In two-di- 
mensional shape optimization, it is also intuitive that 
in order to minimize the amount of material, the 
cross-sections should be varied in an attempt to 
maintain a constant maximum stress at all cross-sec- 
tions. The fully stressed design is used as the optimal- 
ity criterion for the curvature function method being 
presented here. 

The most intuitive way to achieve a fully stressed 
boundary is to add material if the stress is high and 
remove material if the stress is low. But simply adding 
material does not ensure a decrease in stress, since 
this may create sharp corners which cause stress 
concentration. On the other hand, the theorem be- 
low, which was proved in Ref. [ 151, states that when 
the positions of both end points of the boundary 
curve to be varied are fixed, decreasing curvature will 
also increase depth under the curve, which does 
ensure a decrease in stress. 

Theorem. As shown in Fig. 1, let y,(x) and y2(x) 
be continuous for x E (x,, x,), with curvature func- 
tions ‘Q(X) and ‘G(X)> respectively. Let 
J’I(%) =Y,(x,)> Y,(xr) =Y2(xr). If K,(X) < K*(X) for 
every x E (x0,x,), then y,(x) 2 y*(x) for every 
x E (x0, XI). 

With this strictly monotonic relation between cur- 
vature and stress, it is much more convenient to work 
in the curvature domain when trying to achieve the 
fully stressed boundary. The curvature is increased if 
the stress is lower than the target stress, and de- 
creased if the stress is higher than the target stress. 

The curvature function of classic analytic geometry 
in the x-y plane is [16]: 

d2y/dx2 

K(X) = [l + (dy/dx)2]“2 ’ 

peg 
I 

x 
I 
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Fig. I. If K,(X) c q(x), then y,(x) 3 y?(x). 

Equation (1) cannot be solved analytically. Simple 
numerical integration can be used to determine y 
given K(X) and two boundary conditions on the 
positions of both end points. Note that from eqn (I), 
the curve integrated from K(X) will have C* continu- 
ity if K(X) is continuous, 

THE CURVATURE FUNCTION METHOD 

The two-dimensional shape optimization problem 
is now transformed into one of finding the optimum 
curvature function K,(X), which achieves the fully 
stressed boundary. The discrete version of eqn (I) is 
used to develop an algorithm applicable to digital 
computers. The boundary curve is discretized into 
n subsets, and its curvature function K(X) is rep- 
resented by a corresponding piecewise linear func- 
tion. Curvatures K, at the ith point, i = 1,. , n - I, 
are the control (decision) variables. Coordinates y, at 
the ith point become the state (solution) variables. 
The task is to find a set of K, for which the re- 
sulting design satisfies the stress constraints with 
strict equality. 

The procedure is iterative. A stress analysis is done 
on an initial design to check if the stress constraints 
are satisfied with strict equality. It not, a search 
direction is defined in the space of the K, and a new 
set of K, is generated. Then an analysis is performed 
on the new design to check if the stress constraints are 
met. This procedure continues in an iterative manner 
until the stress constraints are satisfied within a 
prescribed tolerance. 

Zero -order search direction 

From the discussion in the previously section, if the 
stress u, at a boundary point is too high (low), then 
the corresponding K, is reduced (increased) in the next 
iteration. A stress-ratio technique [ 171 can be applied 
to define AK~ for the next iteration, assuming a linear 
relation between c, and K,: 

where 

AK, = -up,, (2) 

p, _= (6 - co) 

max(a,, c, 1’ 
(3) 

co is the maximum allowable stress and t( is the step 
length. Note that lpi] < 1, so a can also be interpreted 
as the maximum change in curvature between iter- 
ations. 

In vector form, the curvature K’ at the kth iteration 
is: 

KL=KI,-I_yl,-I I-I 
P (4) 

Note that the search direction pA ’ is a zero -order 
search direction because only function values of the 
stress constraints are required, not derivatives. This 



The curvature function method 649 

search direction is defined by engineering knowledge 
instead of purely numerical information. 

Ideally the stress is constant everywhere along the 
boundary at the optimum. But practically speaking, 
the stress constraints near the two end points of the 
boundary might never be satisfied with strict equality 
since these two points are fixed, as required in the 
Theorem in the previous section. If the initial design 
represents an over-design, there might be small 
under-stressed zones at the end points; if the algor- 
ithm keeps iterating using eqn (4), the curvature at 
the understressed zones would approach infinity, 
which causes instability. On the other hand, if the 
problem is infeasible, there are always overstressed 
zones; if the algorithm keeps iterating using eqn (4) 
the curvature at the overstressed zones would ap- 
proach minus infinity. 

Therefore, a maximum curvature K,,, is prescribed 
in the curvature function method to improve the 
stability. If the curvature is larger than K,,~ at a point 
on the boundary curve, then it is set to K,,,~~ and the 
point is an acceptable understressed point. If the 
curvature is less than -K,,,*~. then the algorithm 
should stop and warn the user that the problem might 
be infeasible. 

Performance index 

In Fig. 2 S is the stress distribution curve of a 
design. A performance index Acabr is defined below to 
evaluate how close S is to the optimum stress distri- 
bution curve S,. Note that S, is a constant straight 
line at (T = oO. 

IEP c (a, - G, )A-r, 

where 

P={1,2 ,..., tl}rT{i)K,<K,,,}. (5) 

As shown in Fig. 2, geometrically Auabs is simply 
the sum of areas A, B and C (except the acceptable 
understressed points where K~ = K,,,), divided by the 
total length in x. It has the same units as stress and 
approaches zero as S approaches S,,. 

Au,,~ z is ’ 

ZpA.x, ’ 
(9) 

We have 

A&’ -A& > IAu&’ - Au&(. (10) 

Adaptive step length procedure 

To assure convergence of an algorithm, the step 
length LY must produce a suficient decrease in the 

Similarly, in the case when ak-’ is too large, 
Au:& ’ - A& 2 [Au& ’ + Au&l. Therefore, when 
eqn (6) is not satisfied, if Aa:, ’ - Aal, > \A5iv; ’ - 

Au&I, the step length is too small and should be 
increased in the next iteration; if A&’ - Au:,, 2 
IAu&’ + AC&(, the step length is too large and 
should be reduced in the next iteration. 

Fig. 2. Definition of the performance index Aush,. 

performance index [ 181. A zero-order sufficient 
decrease criterion for the curvature function method 
is 

Au:,, < /LAO;, ‘, where 0 <p < 1. (6) 

At the kth iteration, if eqn (6) is not satisfied, then 
step length aA has to be adjusted. There can be two 
possible cases when eqn (6) is not satisfied: either a’ _ ’ 
is too large and the k th iteration overshoots; or CL A _ ’ 
is too small, making the convergence slow. 

Consider the case when ak-’ is too small. In this 
case, (a! --co) and (a:-’ --co) have the same sign 
since the kth iteration does not overshoot. Thus 

isP 

> 1 (of-’ - oo) - (af - a,), (7) 
IEP 

which implies 

C (a:-’ - co) - (07 - co) Ax, 
Au;,’ - Auk > IEP ah* 

,ZAx, 

(8) 

Define 

Termination criterion 

The user can specify a tolerance 7n for the amount 
of infeasibility of the stress constraints that will be 
tolerated, considering the precision of the stress data. 
The design is considered feasible if max(u, - uO) < 7,. 

The termination criterion is that the design is feasible 
and Au,,,$ < t,. 
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Finally the algorithm of the Curvature Function 
Method is presented below: 

Algorithm: the curvature jiinction method 

input 

i-” initial boundary curve being optimized, 
defined in terms of X-J’ coordinates; 

00 the maximum allowable stress; 
UO initial step length; 

%l‘lX maximum curvature; 

70 the infeasibility of the stress constraints that 
will be tolerated; 

begin 

constantsO<~L(l,O~v<1; 
iteration number k +-0; 

calculate curvatures tiy of rO, i = I, 2,. , n, from 

eqn (1); 
perform an analysis (e.g. finite element analysis) to 
evalute 0: along r”; 
calculate Aafhs and A&,; 

repeat 

P;+ (4 - (T”) 
max(a,, a,) ’ 

if min(lc) + ‘) < -K,,, then 
begin 
print (“Warning: the problem might be infeasible!“); 
stop; 
end; 
if tif+‘>k,,,, then K:+’ +-K,,, ; 
k+k+l; 

integrate tit using eqn (1) with two end points fixed 
for r”; 
perform an analysis to evaluate 0) along r’; 
calculate AU:,, and AoiVp; 
if A&\ < ~Aoa,,’ then ah+ah ‘; 
else if Au” ’ - Aa” dtll a,,\ b IA& ’ + A&l then 
a”t,q” ‘; 

else zh+!ah ‘; 
v 

until max(of - o(,) < T,, and AGO,,< < 7, 

end. 

Guidelines fiw choosing input parameters 

Before applying this algorithm to design examples, 
guidelines for appropriate selection of input par- 
ameters f”, cOr fl”, K,,, and t, to the curvature 
function algorithm are discussed. T” is the initial 
boundary curve being optimized, defined in terms of 
X--J’ coordinates. A good initial guess can accelerate 
the convergence of the algorithm. If the user has little 

knowledge of what the optimum curve should be, a 
straight line between the two fixed end points should 
be a reasonable initial curve. 0,) is the maximum 
allowable stress, which is provided by the rcquire- 
ment of the design. 

r” is the initial step length. Though the step length 
will be adjusted by the adaptive step length procedure 
throughout the iterations, a good initial step length 
can also accelerate the convergence and reduce insta- 
bility of the algorithm. As shown in eqns (2) and (3), 
the step length can also be interpreted as “the maxi- 
mum change in curvature between iterations”. So a” 
should be of the same order with the expected average 
curvature of r. Let xi) and _Y, be the .u coordinates of 
the two fixed end points of the boundary curve r. The 
radius of the circle which is tangent to both vertical 
lines .Y = x,, and .Y = _Y, is /.x, - .u,,(,‘2. Thus the average 
curvature of I‘ is estimated to be of the order 
I r’/.~, - .Y,~(. Therefore, a reasonable estimation of r” is 

z’)= - 
I 

__. 
I_Y,. - .Y(, 1 (11) 

Maximum curvature K,,, also relates to the curva- 
ture of P. It was chosen to be 3~” for the design 
applications in this paper. t, is the tolerance of the 
size of infeasibility of the stress constraints. It should 
not be smaller than the accuracy of the stress data. 
Finite clement analysis was used to evaluate the stress 
data for the design applications in this paper, and t, 
was set to be 5% of (T(,. Constants L( and v in the 
algorithm wcrc chosen to be 0.8. 

DESIGN APPIJCATIONS 

Three design applications using the curvature func- 
tion method are presented in this section. The first 
cxamplc was to find the shape of a cantilever beam 
with constant maximum stress at all cross-sections. 
This problem has an analytical solution from beam 
theory for comparison. The second example. one of 
the most popular examples in the shape optimization 
literature. was to find the profiles of constant stress 
fillets of a tension bar for different stress concen- 
tration factors. The last example is the design appli- 
cation of a torque arm. This example has also 
appeared widely in the shape optimization literature. 
In these three examples. the curvature function 
method converged to within 5% tolerance after 8-l 5 
iterations. Finite element analysis (using IDEAS 4.0 
and ANSYS PC/linear 4.2) was used to evaluate the 
stress. 

I Minimunl are’u cantilever beam under bending 

The dimensions of a tapered cantilever beam are 
shown in Fig. 3. The boundary between points A and 
B was to be varied to minimize the area of the beam, 
under the constraint that the maximum stress cannot 
exceed (Tag. In order to use a minimum amount of 
material. the cross-sections were varied in an attempt 
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Fig. 3. A tapered cantilever beam. 

to maintain a constant maximum stress at all cross- 
sections. From beam theory, the analytical solution 
for this problem is [ 191: 

G/F, (12) 

where in this example, load per unit width 
P/b = 10 N mn-‘; G,, = 10 MPa; length L = 40 mm. 

The curvature function method was used to solve 
this problem. The input parameters to the algorithm 
were: 

I’” = a straight line between point A and B; 
0_ 1 r --,mm -’ [from eqn (1 I)]; 

‘i,,, 
=3*“=Lmm-I. 

5, = 0.05a,,4L 0.50 MPa. 

The curvature function method converged to 

within T,, after 15 iterations. Only one finite element 
analysis was required in each iteration. Figure 4 
shows the iteration histories of the performance index 
Agabs and area of the beam. Figure 5 shows the stress 
distribution of the initial and final shape. Note that 
in the final design, the stress along the boundary is 
constant at IO MPa, except two under stressed zones 
at both ends of the boundary curve. Figure 6 shows 
the finite element model for the final design. Figure 
7 compares the final shape with eqn (12). The curve 
generated by the curvature function method appears 
to be very close to that from the ideal beam theory. 

“0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Area (mm2) ,I 

420 

-1 ~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Iteration No. 

Fig. 4. Beam example: iteration history 

Stress (MPa) 

“0 5 10 15 20 25 

X (mm) 
3o*1:;1,1 

Fig. 5. Beam example: stress distribution of initial and final shape 
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Fig. 6. Beam example: the finite element model for the final 
shape. 

2. Constant stress fillets of a tension bar 

A fillet that tapers a tension bar from one section 
size to another is shown in Fig. 8. Only the upper half 
of the bar is considered because of symmetry about 
the y = -4.5 in axis. Only the boundary r between 
points A and B is to be optimized. This problem was 
first proposed by Yang et al. [20]. It was also studied 
in the articles by Shyy et al. [21], Rajan and Bele- 
gundu [22] and Yang [23]. The task was to find the 
minimum area fillet with a maximum stress concen- 
tration factor K, = 1.20. 

The curvature function method was used to find 
the profiles of the constant stress fillets for K, = 1.20, 

1 .lO, 1.05. The input parameters to the algorithm 
were: 

r” = a straight line between point A and B; 
o,, = 10,500 psi for K, = 1.05, 11,000 psi for K, = 

I. 10, 12,000 psi for K, = 1.20; 
aO=&iin-’ (from eqn (11)); 

&n,X =3aO=Iin-l. 
6.5 3 

T, = 0.05~7,. 

The curvature function method converged to 
within 5, after eight iterations for all three designs. 
Figure 9 shows the iteration histories of the perform- 
ance index AoXbs and areas enclosed by the fillet and 
the X, Y axes. Figure 10 shows the stress distributions 
of the three final designs. There are acceptable under- 
stressed zones at the beginning of the curves. The 
areas for the whole bar are 132.693 in2 (K, = 1.20), 
133.829in2 (K,= 1.10) and 134.410in’ (K,= 1.05). 
Figure 11 shows the finite element model of the final 
design for K, = 1.05. 

Yang et al. [20] applied a linearization method on 
the same problem. Using different finite elements and 
boundary representations, it took 15-30 iterations to 
converge to the tinal design for K, = 1.20. The result- 
ing areas ranged from 133.088 to 135.091 in’. Shyy et 
al. [21] used different order p-version finite elements 

Y (mm) 

-0 5 10 15 20 25 30 35 40 
X (mm) 

Fig. 7. Comparison of the final curve with that from beam theory. 

cso.%k*4 

symmetry plane 

units: inches unless noted 

Fig. 8. Geometric configuration of a fillet. 
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-D Kt= 1.05 
* Kt= 1.1 
+ Kt=1.2 

” 

0 1 2 3 4 5 6 7 8 

Area (in’) 

” 

0 1 2 3 4 5 6 7 8 

Iteration No. 

Fig. 9. Fillet example: iteration history 

and CONLIN optimizer on this fillet problem. They 
reported convergence to K, = 1.22 after four iter- 
ations, but the CPU time required for full optimiz- 
ation is more than 1 I times that of one finite element 
analysis. The area of their final design was not 
reported. Rajan and Belegundu [22] used fictitious 
load and reported convergence after nine iterations. 
The final area was 139.80 in*. Yang [23] used the 
boundary element method and CONMIN optimiz- 
ation program on the same problem. He reported 
convergence after 10 iterations to a final area of 
134.29 in2. 

The number of iterations is not an absolute index 
for comparing the performance of optimization al- 
gorithms because the computational loads for each 
iteration and termination criteria are different for 

each algorithm. However, an iteration for the curva- 
ture function method did require the smallest com- 
putation effort among all algorithms. Only one finite 
element analysis was needed for each iteration and no 
sensitivity analysis was required. 

3. Optimum shape design of a torque arm-stress 
constraint 

The initial dimensions and loading conditions of a 
torque arm are shown in Fig. 12. The arm is con- 
strained around the circumference of the hole located 
at x = 41.6 cm. Only the boundary r between point 
A and B (0 < x ,< 41.6 cm) was to be varied to 
minimize the area of the arm. The shaded regions 
(X < 0, x > 41.6) were held to their original dimen- 
sions throughout. 

Stress (psi) 

I Kt=1.05 

7 Kt= 1.10 
- Kt=1.20 

“OTO 1 .o 2.0 3.0 4.0 5.0 6.0 

X (in.) 

Fig. 10. Fillet example: stress distribution 
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The original problem, which was proposed by 
Bokin [5], had a stress and a vertical displacement 
constraint. This problem was also studied in the 
articles by Bennett and Bokin [6]. Braibant and 
Fleury [24], Yang et (I/. [20]. and Rajan and Bclc- 
gundu [22]. In this paper, the curvature function 

method was used to solve the problem with only the 
stress constraint. The input parameters to the algor- 
ithm arc: 

I”‘= a straight line between points A and B; 
(T,,= 81 MPa; 
1 I! =&cm~’ [by eqn (II)]; 

h-,,,.,, = 3r =&cm-‘: 

r, = 0.050,, = 4.05 MPa. 

The curvature function method converged to 
within T, after 12 iterations. Only one finite element 
analysis was required in each iteration. Figure 13 
shows the iteration histories of the performance index 

AU‘,,, and area of the arm between points A and B. 
Figure 14 shows the finite element models during the 
iterations; the areas are 354.81 (initial shape), 239.64 
(fourth iteration), 208.39 (eighth iteration) and 
200.19 cm’ (final shape). The mass of the final design 
is 0.6093 kg (mass density of steel is 0.0079 kg cm-‘). 
Figure 15 shows the final design and stress distri- 
bution along r. Note that in Fig. 13 the algorithm 
oscillated before the sixth iteration. This is because 
the initial step length CC” from eqn (11) was too large 

k & 6.04 41.6 

unit: centimeter 

Fig. 12. The dm~ensions and loading condition of a torque arm. 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Area (cm*) 

400 

0’ / I E , 

0 1 2 3 4 5 Itera6tion 7No. 8 9 10 11 12 

Fig. 13 l’orque wm example; iteration history. 
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(a) Initial Shape 

(c) 8th iteration 

(d) Final shape (12th iteration) 

Fig. 14. Torque arm example: finite element models during iterations 

and there are highly understressed zones at both ends 
of r, as shown in Fig. 15. After the sixth iteration, the 
step length is reduced by the adaptive steplength 
procedure, and the curvature at the highly under- 
stressed zones reaches K,,,.,~, so the algorithm settles 
down. 

The final design generated by the curvature 
function method cannot be compared with those in 
the literature because the vertical displacement con- 
straint was relaxed here. The maximum vertical dis- 
placement in the final design is 1.23 cm, which 
violates the constraint (maximum displacement is less 
than 0.9cm) in the original problem posed by 
Bokin [S]. 

DISCL’SSION AND CONCLUSION 

The curvature function method for two-dimen- 
sional shape optimization under stress constraints is 
presented in this paper. This method uses the curva- 
tures along the boundary as design variables. The 
basic idea is to use the strictly monotonic relation 
between local curvature and stress, instead of purely 
numerical gradient information, to define the search 
direction in each iteration. The curvature function 
method requires only the values of stress, rather than 
derivatives. It is equally applicable to various analysis 
techniques, be they finite element methods, boundary 
element methods. or even physical experiments using 
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Stress (Mpa) 

100 

80 

-5 0 5 10 15 20 25 30 35 40 45 SO 

X (cm) 

Fig. 15. Torque arm example: stress distribution of the final design. 

photo-elasticity or strain gages. Implementation of 
this method is simple and completely external to the 
analysis program, no modification of the analysis 
program is needed. 

The design examples illustrate the computational 
efficiency of the curvature function method. Struc- 
tural analyses usually dominate the computational 
load of the shape optimization process. In the curva- 
ture function method only one structural analysis is 
needed in each iteration. Furthermore, this compu- 
tational load is independent of the number of vari- 
ables. Thus more variables can be used to describe the 
shape. In the design examples, up to 50 variables were 
used to describe the shapes. 
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